Ch 11

Quadratic and Exponential Functions
Quick Review

- Graphing Equations:
 - \(y = \frac{1}{2} x - 3 \)
 - \(2x + 3y = 6 \)
Quick Review

- Evaluate Expressions
 - Order of Operations!

- Factor
 - 1st – GCF
 - 2nd – trinomials into two binomials

P - grouping symbols
E - exponents
M/D - mul/div left to right
A/S - add/sub left to right
11.1

Graphing Quadratic Functions
Vocab

• Parabola –
 – The graph of a quadratic function

• Quadratic Function –
 – A function described by an equation of the form $f(x) = ax^2 + bx + c$, where $a \neq 0$
 – A second degree polynomial

• Function –
 – A relation in which exactly one x-value is paired with exactly one y-value
Quadratic Function

- This shape is a parabola
- Graphs of all quadratic functions have the shape of a parabola

Words: A quadratic function is a function that can be described by an equation of the form $y = ax^2 + bx + c$, where $a \neq 0$.

Models:
Exploration of Parabolas

• Sketch pictures of the following situations

\[y = 3x^2 \quad y = 2x^2 \quad y = x^2 \quad y = \frac{1}{2}x^2 \quad y = \frac{1}{4}x^2 \quad y = \frac{1}{8}x^2 \]

\[y = -2x^2 \quad y = -1x^2 \quad y = 1x^2 \quad y = 2x^2 \]

\[y = x^2 - 3 \quad y = x^2 - 1 \quad y = x^2 + 1 \quad y = x^2 + 4 \]

\[y = (x+1)^2 \quad y = (x-1)^2 \quad y = (x+3)^2 \quad y = (x-3)^2 \]
Example

• Graph the quadratic equation by making a table of values.

\[y = x^2 - 2 \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Example

• Graph the quadratic equation by making a table of values.

\[y = -\frac{1}{2} x^2 + 4 \]
Parts of a Parabola \(\Rightarrow ax^2 + bx + c \)

- + a opens up
 - Lowest point called: minimum
- - a opens down
 - Highest point called: maximum
- Parabolas continue to extend as they open
- Domain (x-values): all real numbers
- Range (y-values):
 - Open up - #s greater than or equal to minimum value
 - Open down - #s less than or equal to the maximum value
- Vertex – minimum or maximum value
- Axis of Symmetry: vertical line through vertex
Axis of Symmetry

Words: The equation of the axis of symmetry for the graph of \(y = ax^2 + bx + c \), where \(a \neq 0 \), is \(x = -\frac{b}{2a} \).

Model: The graph of a parabola with the axis of symmetry at \(x = 2 \).
Example

• Use characteristics of quadratic functions to graph

\[y = -x^2 + 2x + 1 \]

\[a = -1 \]
\[b = 2 \]
\[c = 1 \]

– Find the equation of the axis of symmetry.
– Find the coordinates of the vertex of the parabola.
– Graph the function.
Example

• Use characteristics of quadratic functions to graph $y = -x^2 + x$

 – Find the equation of the axis of symmetry.
 – Find the coordinates of the vertex of the parabola.
 – Graph the function.

$x = \frac{-b}{2a} = \frac{-1}{2(1)} = -\frac{1}{2}$

Graph the function.
Example

• A football player throws a short pass. The height y of the ball is given by the equation $y = -16x^2 + 8x + 5$, where x is the number of seconds after the ball was thrown. What is the maximum height reached by the ball?
Assignments

• #1 – due today
 – P461: 11 – 15

• #2 – due next time
 – P462: 28 – 40, 45 – 47, 49
Families of Quadratic Functions
Families of Quadratic Functions

- Share the same vertex
- Share the same axis of symmetry
- Have the same shape
Example

• Graph the group of equations on the same graph. Compare and contrast the graphs. What conclusions can be drawn?

\[
\begin{align*}
y &= x^2 \\
y &= \frac{1}{2} x^2 \\
y &= 2x^2 \\
y &= 4x^2
\end{align*}
\]
Summary

<table>
<thead>
<tr>
<th>Addition to $y = x^2$ equation</th>
<th>Changes to graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pm ax$ as a increases</td>
<td></td>
</tr>
<tr>
<td>$\pm ax$ as a decreases</td>
<td></td>
</tr>
</tbody>
</table>
Example

- Graph the group of equations on the same graph. Compare and contrast the graphs. What conclusions can be drawn?

\[y = -x^2 \]
\[y = -x^2 + 1 \]
\[y = -x^2 - 4 \]
Summary

<table>
<thead>
<tr>
<th>Addition to $y = x^2$ equation</th>
<th>Changes to graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient on x^2 becomes greater</td>
<td>Parabola narrows</td>
</tr>
<tr>
<td>Coefficient on x^2 becomes smaller</td>
<td>Parabola widens</td>
</tr>
<tr>
<td>$+c$</td>
<td></td>
</tr>
<tr>
<td>$-c$</td>
<td></td>
</tr>
</tbody>
</table>
Example

- Graph the group of equations on the same graph. Compare and contrast the graphs. What conclusions can be drawn?

\[y = x^2 \]

\[y = (x - 3)^2 \]

\[y = (x + 1)^2 \]
Summary

<table>
<thead>
<tr>
<th>Addition to $y = x^2$ equation</th>
<th>Changes to graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient on x^2 becomes greater</td>
<td>Parabola narrows</td>
</tr>
<tr>
<td>Coefficient on x^2 becomes smaller</td>
<td>Parabola widens</td>
</tr>
<tr>
<td>Constant is greater than zero</td>
<td>Shifts parabola upwards</td>
</tr>
<tr>
<td>Constant is less than zero</td>
<td>Shifts parabola downwards</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
&\text{(x +)^2} \\
&\text{(x -)^2}
\end{align*}
\]
Example

- Describe how each graph would change from the parent graph of \(y = x^2 \). Then name the vertex.

\[
y = -2x^2 \quad \text{opens down, narrows} \quad (0,0)
\]

\[
y = x^2 - 6 \quad \text{shifts down 6} \quad (0,-6)
\]

\[
y = (x+2)^2 \quad \text{shifts left 2} \quad (-2,0)
\]

\[
y = (x-7)^2 + 2 \quad \text{shifts right 7, shifts up 2} \quad (7,2)
\]

\[
y = (x+2)^2 - 1 \quad \text{shifts left 2, shifts down 1} \quad (-2,-1)
\]
Example

• In a computer game, a player dodges space shuttles that are shaped like parabolas. Suppose the vertex of one shuttle is at the origin. The space shuttle begins with original equation $y=-2x^2$. The shuttle moves until its vertex is at (-2, 3). Find an equation to model the shape and position of the shuttle at its final location.

$y=-2(x-4)^2-6$
Assignments

• #1 – due today
 – P466: 3, 4, 5, 7, 9, 11, 13, 15, 17

• #2 – due next time
 – P466: 6 – 24 even, 25 – 27, 30 – 35
11-3

Solving Quadratic Equations by Graphing
Quadratic Equations

• Quadratic Equations –
 – Value of the related quadratic function at 0
 – What does that mean?
 \[y = ax^2 + bx + c \]

• At 0 means that \(y = 0 \)
 \[0 = ax^2 + bx + c \]

• The solutions (the two things that \(x \) equals) are called the roots
 – The roots are the solutions to quadratic equations
• The roots can be found by finding the x-intercepts or zeros
Example

• The path of water streaming from a jet is in the shape of a parabola. Find the distance from the jet where the water hits the ground by graphing. Use the function $h(d) = -2d^2 + 4d + 6$, where $h(d)$ represents the height of a stream of water at any distance d from the jet in feet.

$$x = \frac{-b}{2a} = \frac{-4}{2(-2)} = \frac{-4}{-4} = 1$$

$\quad x\ 2\ 3$
Example

• Suppose the function \(h(t) = -16t^2 + 29t + 6 \) represents the height of the water at any time \(t \) seconds after it has left its jet. Find the number of seconds it takes the water to hit the ground by graphing.

\[
x = \frac{-b}{2a} = \frac{-29}{2(-16)} = \frac{29}{32} = .906
\]
Example

- Find the roots of \(x^2 + 2x - 15 = 0 \) by graphing the related function.

\[
\begin{align*}
A &= 1 \\
b &= 2 \\
c &= -15
\end{align*}
\]

\[
x = \frac{-b}{2a} = \frac{-2}{2(1)} = -1
\]

\[
x = -5, 3
\]
Example

• Find the roots of $0 = x^2 - 5x + 4$ by graphing the related function.

$$x = \frac{-b}{2a} = \frac{5}{2(1)} = 2.5$$

$x = 1, 4$
Example

- Estimate the roots of \(-x^2 + 4x - 1 = 0 \).

\[x = \frac{-b}{2a} = \frac{-4}{2(-1)} = \frac{4}{2} = 2 \]

Between 3 and 4
Between 0 and 1
Example

• Estimate the roots of $y = x^2 - 2x - 9$.

\[x = \frac{-b}{2a} = \frac{2}{2(-9)} = 1 \]

Between 4 and 5
Between -3, -2

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-10</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-10</td>
</tr>
</tbody>
</table>
Example

• Find two numbers whose sum is 10 and whose product is -24.

\[x(10-x) = -24 \]

\[10x - x^2 = -24 \]

\[x = \frac{-b}{2a} = \frac{-10}{2(-1)} = 5 \]

\[x -2 \]

\[x = 0 \]

\[x = 12 \]

\[x = -2 \]

\[x = 0 \]

\[x = 12 \]

\[x = -2 \]
Example

• Find two numbers whose sum is 4 and whose product is 5.

\[
x(4-x) = 5
\]
\[
4x-x^2 = 5
\]
\[
x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}
\]
\[
x = \frac{4 \pm \sqrt{4^2-4(-5)}}{2(-1)}
\]
\[
x = \frac{4 \pm \sqrt{24}}{-2}
\]
\[
x = \frac{4 \pm 2\sqrt{6}}{-2}
\]

No real solutions.
Assignments

• #1 – due today
 – P471: 1, 2, 3, 5, 7, 11, 13, 21, 23

• #2 – due next time
 – P471: 4 – 24 even, 28 – 32
Solving Quadratic Equations by Factoring
Factoring to Solve a Quadratic Equ

\[y = 3x^2 - 3x \]

• In the last chapter, we set the quadratic equation equal to what number?

\[0 = 3x^2 - 3x \]

Zero Product Property

For all numbers \(a \) and \(b \), if \(ab = 0 \), then \(a = 0 \), \(b = 0 \) or both \(a \) and \(b \) equal 0.
Example

• Solve \(-2x(x + 5) = 0\). Check your solution.

\[
\begin{align*}
-2x &= 0 \\
-2 &= -2 \\
x &= 0
\end{align*}
\]

\[
\begin{align*}
x + 5 &= 0 \\
-5 &= -5 \\
x &= -5
\end{align*}
\]

Checks

\[
\begin{align*}
-2(0)(0 + 5) &= 0 \\
-2(0)(0) &= 0 \quad \checkmark
\end{align*}
\]

\[
\begin{align*}
-2(-5)(-5 + 5) &= 0 \\
-2(-5)(0) &= 0 \quad \checkmark
\end{align*}
\]
Example

• Solve $z(z - 8) = 0$. Check your solution.

\[z = 0 \]

\[z - 8 = 0 \]
\[+ \quad + \quad + \]
\[z = 8 \]

Check

$0(0 - 8) = 0$
$0(-8) = 0$
$0 = 0 \checkmark$

$8(8 - 8) = 0$
$8(0) = 0$
$0 = 0 \checkmark$
Example

• Solve \((a - 4)(4a + 3) = 0\). Check your solution.

\[
\begin{align*}
0 - 4 &= 0 \\
+4 &+4 \\
\underline{0} &= \underline{4} \\
\end{align*}
\]

\[
\begin{align*}
4a + 3 &= 0 \\
-3 &-3 \\
\underline{4a} &= \underline{-3} \\
\frac{4a}{4} &= \frac{-3}{4} \\
\end{align*}
\]

\(a = \frac{-3}{4}\)

Checks

\[
\begin{align*}
(4 - 4)(4 \cdot 4 + 3) &= 0 \\
0 \cdot 19 &= 0 \\
0 &= 0 \checkmark \\
\end{align*}
\]

\[
\begin{align*}
(-\frac{3}{4} - 4)(4 \cdot -\frac{3}{4} + 3) &= 0 \\
(-\frac{3}{4}) \cdot (-3 + 3) &= 0 \\
0 &= 0 \checkmark \\
\end{align*}
\]
Example

• A child throws a ball up in the air. The height h of the ball t seconds after it has been thrown is given by the equation $h = -16t^2 + 8t + 4$. Solve $4 = -16t^2 + 8t + 4$ to find how long it would take the ball to reach the height from which it was thrown.

\[
\begin{align*}
4 &= -16t^2 + 8t + 4 \\
0 &= -16t^2 + 8t \\
0 &= 8t(-2t+1) \\
-2t+1 &= 0 \\
-t &= -1 \\
-t &= -1 \\
\frac{-2t}{-2} &= \frac{1}{-2} \\
-t &= \frac{1}{2} \\
-t &= \frac{1}{2} \\
\end{align*}
\]

$t = \frac{1}{2}$ s
Example

• Solve $x^2 - 4x - 21 = 0$. Check your solution.

$(x-7)(x+3) = 0$

\[
\begin{align*}
\text{Check} & : \\
7^2 - 4(7) - 21 &= 0 \\
49 - 28 - 21 &= 0 \\
0 &= 0 \checkmark \\
\end{align*}
\]

\[
\begin{align*}
\text{Check} & : \\
(-3)^2 - 4(-3) - 21 &= 0 \\
9 + 12 - 21 &= 0 \\
0 &= 0 \checkmark \\
\end{align*}
\]
Example

- Solve \(x^2 - 2x = 3\). Check your solution.

\[
x^2 - 2x - 3 = 0 \\
(x - 3)(x + 1) = 0 \\
x - 3 = 0 \quad \text{or} \quad x + 1 = 0 \\
x = 3 \quad \text{or} \quad x = -1
\]

Check

\[
3^2 - 2(3) = 3 \\
9 - 6 = 3 \\
3 = 3 \checkmark
\]

\[
(-1)^2 - 2(-1) = 3 \\
1 + 2 = 3 \\
3 = 3 \checkmark
\]
Example

- The length of a rectangle is 4 feet less than three times its width. The area of the rectangle is 55 square feet. Find the measures of the sides.

\[A = 2lw \]

\[55 = (3x - 4)(x) \]

\[55 = 3x^2 - 4x - 55 \]

\[0 = 3x^2 - 4x - 55 \]

\[0 = (3x + 11)(x - 5) \]

For the first factor:

\[3x + 11 = 0 \]

\[x = -\frac{11}{3} \]

For the second factor:

\[x - 5 = 0 \]

\[x = 5 \]

So, the possible values for the width are 5 and 11/3, making the measures of the sides 11' and 11'.
Example

- The length of a rectangle is 2 feet more than twice its width. The area of the rectangle is 144 square feet. Find the measure of its sides.

\[A = l \cdot w \]

\[144 = (2x + 2)(x) \]

\[144 = 2x^2 + 2x \]

\[-144 \]

\[0 = 2x^2 + 2x - 144 \]

\[0 = 2(x^2 + x - 72) \]

\[0 = 2(x - 8)(x + 9) \]

\[x - 8 = 0 \]

\[x = 8 \]

\[x + 9 = 0 \]

\[x = -9 \]
Assignments

• #1 – due today
 – P476: 4 – 10

• #2 – due next time
 – P476: 12 – 28 even, 29 – 32, 36 – 42
11-5

Solving Quadratic Equations by Completing the Square
Situation

• Sometimes you can’t factor a polynomial
• So to solve for the roots, complete the square

• Completing the Square
 1. Move the constant to the other side
 2. Take half of the coefficient of x
 3. Square that number \uparrow
 4. Add that number \uparrow to both sides of the equation
 5. Then solve by factoring!
Example

• Find the value of c that makes $x^2 - 8x + c$ a perfect square.

$x^2 - 8x + 16$
$(x-4)(x-4)$

$c = 16$
Example

• Find the value of c that makes $x^2 - 6x + c$ a perfect square.

\[x^2 - 6x + 9 \]
\[(x - 3)(x - 3) \]

$c = 9$
Example

• Solve $x^2 + 12x - 13 = 0$ by completing the square.

\[
x^2 + 12x + 36 = 13 + 36
\]

\[
(x + 6)^2 = 49
\]

\[
\sqrt{(x+6)^2} = \sqrt{49}
\]

\[
x + 6 = \pm 7
\]

\[
-x - 6
\]

\[
x = -6 \pm 7
\]

\[
x = 1, -13
\]
Example

• Solve $x^2 + 6x - 16 = 0$ by completing the square.

\[
\begin{align*}
\quad & x^2 + 6x + 9 = 10 + 9 \\
\quad & (x + 3)^2 = 25 \\
\quad & \sqrt{(x + 3)^2} = \sqrt{25} \\
\quad & x + 3 = \pm 5 \\
\quad & x = -3 \pm 5 \\
\quad & x = -3 \pm 5 \\
\quad & x = 2, -8 \\
\end{align*}
\]
Special Note

• You can only complete the square if the coefficient of the first term is 1. If it is not 1, first divide each term by the coefficient.

\[
\frac{2x^2}{a} + \frac{6x}{a} + \frac{12}{a} = \frac{4}{a}
\]

\[
x^2 + 3x + 6 = 2
\]
Example

- When constructing a room, the width is to be 10 feet more than half the length. Find the dimensions of the room to the nearest tenth of a foot, if its area is to be 135 square feet.

\[A = lw \]

\[x \left(\frac{1}{2}x + 10 \right) = 135 \]

\[2 \left[\frac{1}{2}x^2 + 10x \right] = 135 \]

\[x^2 + 20x + 100 = 270 - 100 \]

\[(x + 10)^2 = 370 \]

\[x = 9.24, -21.4 \]

\[x + 10 = \pm \sqrt{370} \]

\[x = -10 \pm \sqrt{370} \]
Assignments

• #1 – due today
 – P481: 3 – 17 odd, 23 – 25 odd

• #2 – due next time
 – P481: 4 – 34 even, 36, 38 – 41
11-6

The Quadratic Formula
Summary of Methods to Solve Quadratic Equations

<table>
<thead>
<tr>
<th>Method</th>
<th>When Is the Method Useful?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphing</td>
<td>Use only to estimate solutions.</td>
</tr>
<tr>
<td>Factoring</td>
<td>Use when the quadratic expression is easy to factor.</td>
</tr>
<tr>
<td>Completing the Square</td>
<td>Use when the coefficient of x^2 is 1 and all other coefficients are fairly small.</td>
</tr>
</tbody>
</table>

• So, what happens with the leading coefficient is not 1?
• Use the Quadratic Formula
Quadratic Formula

- Form: \(ax^2 + bx + c = 0 \)
- Can’t have a negative under the square root
 - Not a real number
- Equations can have 2, 1, or 0 real number solutions

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \quad a \neq 0
\]
Example

• Use the Quadratic Formula to solve \(2x^2 - 5x + 3 = 0\).

\[
\begin{align*}
 a &= 2 \\
 b &= -5 \\
 c &= 3 \\

 x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
 x &= \frac{5 \pm \sqrt{25 - 24}}{4} \\
 x &= \frac{5 \pm 1}{4} \\
 x &= \frac{6}{4} = \frac{3}{2} \\
 x &= \frac{4}{4} = 1
\end{align*}
\]

\(x = \frac{3}{2}, 1\)
Example

- Use the Quadratic Formula to solve \(x^2 + 4x + 2 = 0 \).

\[\begin{align*}
\sqrt{b^2 - 4ac} & = \sqrt{4^2 - 4(1)(2)} \\
& = \sqrt{16 - 8} \\
& = \sqrt{8} \\
& = 2\sqrt{2}.
\end{align*} \]

\[\begin{align*}
x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
x &= \frac{-4 \pm \sqrt{8}}{2(1)} \\
x &= \frac{-4 \pm 2\sqrt{2}}{2} \\
x &= -2 \pm \sqrt{2}.
\end{align*} \]
Example

• Use the Quadratic Formula to solve \(-x^2 + 6x - 9 = 0\).

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

\[
a = -1, \quad b = 6, \quad c = -9
\]

\[
x = \frac{-6 \pm \sqrt{6^2 - 4(-1)(-9)}}{2(-1)} = \frac{-6 \pm \sqrt{36 - 36}}{-2} = \frac{-6 \pm \sqrt{0}}{-2} = \frac{-6}{-2} = 3
\]
Example

• Use the Quadratic Formula to solve \(-3x^2 + 6x + 9 = 0\).
Example

• A punter kicks the football with an upward velocity of 58 ft/s and his foot meets the ball 1 foot off the ground. His formula is \(h(t) = -16t^2 + 58t + 1 \), where \(h(t) \) is the ball’s height for any time \(t \) after the ball was kicked. What is the hang time (total amount of time the ball stays in the air)?

\[
\begin{align*}
\text{Given:} & \quad a = -16, \quad b = 58, \quad c = 1 \\
\text{Quadratic formula:} & \quad t = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \\
& \quad = \frac{-58 \pm \sqrt{58^2-4(-16)(1)}}{2(-16)} \\
& \quad = \frac{-58 \pm \sqrt{3428}}{-32} \\
& \quad = \frac{-58 \pm 58.55}{-32} \\
& \quad = -0.17, 3.64
\end{align*}
\]

\(t = 3.64 \)
Assignments

• #1 – due today
 – P486: 3 – 9 odd, 10

• #2 – due next time
 – P486: 12 – 24 even, 26 – 31
11-7

Exponential Functions
Exponential Function

• A function in the form $y = a^x$
 – Where $a > 0$ and $a \neq 1$
 – Another form is: $y = ab^x + c$
 • In this case, a is the coefficient

• To graph exponential function, make a table

• Initial Value –
 – The value of the function when $x = 0$
 – Also the y-intercept
Example

- Graph $y = 1.5^x$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>2.25</td>
</tr>
<tr>
<td>3</td>
<td>3.375</td>
</tr>
<tr>
<td>5</td>
<td>7.59</td>
</tr>
<tr>
<td>-1</td>
<td>$\sqrt[3]{3}$</td>
</tr>
<tr>
<td>-2</td>
<td>$\sqrt{2}$</td>
</tr>
<tr>
<td>-5</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Example

• Graph $y = 2.5^x$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>6.25</td>
</tr>
<tr>
<td>-1</td>
<td>.4</td>
</tr>
<tr>
<td>-3</td>
<td>.004</td>
</tr>
</tbody>
</table>
Example

Graph \(y = 3^x + 1 \). Then state the y-intercept.

\[
\begin{array}{c|c}
 x & y \\
 \hline
 0 & 2 \\
 -1 & 4 \\
 -1.1 & 1.1 \\
 -2 & 1.04 \\
 -3 & \\
\end{array}
\]

\(y = 2 \)
Example

• Graph $y = 5^x - 4$. Then state the y-intercept.

$y = -3$
Growth and Decay

• Exponential functions are used to represent situations of exponential growth and decay
 – Exponential growth – growth that occurs rapidly
 • Money in a bank
 – Exponential decay – decay that occurs rapidly
 • Half-life of radioactive materials
Example

• When Taina was 10 years old, she received a certificate of deposit (CD) for $2000 with an annual interest rate of 5%. After eight years, how much money will she have in the account?

\[
B = P \left(1 + \frac{r}{t}\right)^{nt}
\]

\[
B = 2000 \left(1 + \frac{0.05}{1}\right)^{8}
\]

\[
= 2000 \left(1.05\right)^{8}
\]

\[
= 2000 \left(1.477\right)
\]

\[
= \$ 2954.91
\]
Example

• When Marcus was 2 years old, his parents invested $1000 in a money market account with an annual average interest rate of 9%. After 15 years, how much money will he have in the account?

\[B = P(1+r)^t \]
\[= 1000(1 + .09)^{15} \]
\[= 1000 (1.09)^{15} \]
\[= 1000 (3.04) \]
\[= \$ 3042.48 \]
Assignments

• #1 – due today
 – P492: 3 – 5, 7 – 19 odd
• #2 – due next time
 – P492: 6 – 22 even, 23, 27 – 31
Ch 11 Review

• #1 – due today
 – P496: 11 – 49 odd

• #2 – due next time
 – P496: 1 – 10, 12 – 50 even, 51, 52